
Improving Patch-Based Synthesis by Learning Patch Masks

Nima Khademi Kalantari1 Eli Shechtman2 Soheil Darabi2 Dan B Goldman2 Pradeep Sen1

1University of California, Santa Barbara
2Adobe Research, Seattle, WA

Abstract

Patch-based synthesis is a powerful framework for nu-
merous image and video editing applications such as hole-
filling, retargeting, and reshuffling. In all these applica-
tions, a patch-based objective function is optimized through
a patch search-and-vote process. However, existing tech-
niques typically use fixed-size square patches when compar-
ing the distance between two patches in the search process.
This presents a fundamental limitation for these methods,
since many patches cover multiple regions that can move,
occlude, or otherwise behave independently in source and
target images. We address this problem by using masks to
down-weight some pixels in the patch-comparison opera-
tion. The main challenge is to choose the right mask ac-
cording to the content during the search-and-vote process.
We show how simple user assistance can lead to excellent
results in challenging hole-filling examples. In addition,
we propose a fully automated solution by learning a model
to predict an appropriate mask using a set of features ex-
tracted around each patch. The model is trained using a
manually annotated dataset, augmented with simulated di-
vergence from ground truth. We demonstrate that our pro-
posed method improves over existing approaches for single-
and multi-image hole-filling applications.

1. Introduction
Non-parametric patch-based synthesis methods have

shown impressive results for challenging image and video
editing problems. These include image-based rendering [7],
hole-filling [9, 12, 24], texture synthesis [13], retargeting
and reshuffling [4, 18], super-resolution [8], morphing [17],
image compositing and interpolation [6], video summariza-
tion [3], and HDR reconstruction [11, 16]. The success of
this approach has led to implementations in popular com-
mercial tools such as Adobe Photoshop [1].

These methods are based on optimizing a patch-based
objective function through a multi-scale patch search-and-
vote process. Current patch-based methods use fixed-size
square patches, but may produce poor results when a target
patch covers multiple regions and the available patch ex-
amples containing the same layout of the different regions

are scarce or do not exist at all. In these cases, as shown
in Fig. 1 for the Single-Image Hole-Filling (SIHF) applica-
tion, using only a fragment of the patch may lead to finding
more relevant examples and thus better synthesis results.

This problem is also common in Multi-Image Hole-
Filling (MIHF), using other photos of the same scene cap-
tured from different views and/or at different times, as can
often be found in personal photo albums or web collec-
tions [6, 25]. In MIHF, all the information needed to fill
the hole might be present in the example source image, but
it may contain parallax between objects at different depth
layers or motion between exposures, and the patches cov-
ering two objects at different depths may thus be dissimilar
between the source and target images.

A similar issue occurs in related problems such as optical
flow, stereo, and image matching. In optical flow estima-
tion, this problem is usually handled by optimizing for the
flow and depth layer segments simultaneously [19, 20, 21]
and requires multiple inputs. Bobick and Intille [5] pro-
posed shifted windows to handle depth discontinuities in
stereo matching. Trulls et al. [23] take segmentation into
account for computing image matches. However, in our ap-
plication, segmentation cannot be computed a priori in the
to be synthesized region (e.g., the “hole” in hole-filling) be-
cause its content is unknown. As far as we know, no re-
search to date has tackled this issue for patch-based synthe-
sis or other image editing approaches.

In this paper, we address the problem of fixed-shape
patches by using content-adaptive masks. Our method
chooses an appropriate mask for a patch during the search-
and-vote process, and down-weights the distance function
in the fragment of a patch for which the match is not valid.
We show how a simple manual annotation of the boundary
edges inside the hole can lead to excellent hole-filling re-
sults when masks are employed.

Furthermore, we propose a fully automated solution by
learning a mask selection model that can predict the best
mask for each patch in the to be synthesized region using
a set of features extracted in its vicinity. Unlike typical
computer vision problems where the training set is fully
consistent with testing set, in image synthesis the “testing
set” arises from an iterative process which does not contain
only “real-world” images or patches. This is because the

patch-based search-and-vote process is done repeatedly at
different scales and multiple iterations to compute a single
image result. Therefore, a small prediction errors in early
iterations can affect the types of patches seen in later it-
erations. Thus, it is a challenge to construct a training set
that appropriately samples the space of possible patches that
may be seen at testing time in the middle of the iterations.
We propose to construct the training set by extracting data
from a hole-filling process using ground truth masks, aug-
mented with data from simulations of typical iterative di-
vergence from an optimal hole-filling process. We demon-
strate the results of our method on both the SIHF and MIHF
tasks. Our results show significant improvement over cur-
rent patch-based techniques for complex, layered scenes.

2. Problem Explanation
We start by explaining the method for Single-Image

Hole-Filling (SIHF). In this application, as shown in Fig. 1,
the user defines a hole region in an image which divides it
into target T (shown in pink) and source region S (the re-
gion outside the hole). The goal is to complete the missing
target region using information (patches) from the source
region. This is done by minimizing an objective function
which has the following patch-based energy term [24],

Coherence(T, S) =
1

|T |
∑
Q∈T

min
P∈S

D(Q, P), (1)

where P and Q are patches of size w × w in the source
and target images, respectively, and D is defined as the L2

distance between the two patches and is typically weighted
equally for all pixels. This objective function is minimized
by performing the “search” and “vote” process iteratively, in
a coarse-to-fine fashion. In the search step, for every patch
in the target image, the most similar patch in the source im-
age is found. Then in the voting stage, for each pixel in
the target, all patches found in the search stage that over-
lap that pixel are averaged to obtain its color for the next
iteration. Starting from the coarsest scale, the search-and-
vote process is performed iteratively until convergence and
the converged target is upsampled and used at the next finer
scale. This process is continued until convergence in the
finest scale.

Fig. 1 (top row), illustrates the problem with conven-
tional patch-based techniques. Although all the content in
the target area has some plausible match in the source, the
orange and red squares in the target region have no single
full matching patch in the source region. This problem is
more severe at coarser scales where patches are larger rela-
tive to the image, and therefore the chance of covering mul-
tiple regions is higher. Since the algorithm depends on con-
verging to good local optima at each scale, convergence to
a bad solution at coarse scales is generally irreversible at

Input Image Result

C
o

n
v

e
n

ti
o

n
a

l
D

e
si

re
d

T S

T S

Figure 1. The problem with conventional patch-based methods.
(top) In the standard approach, for every patch in the hole (shown
in pink) a comparable full patch should be found in the source (the
region outside the hole). However, some patches, such as those
shown here with red and orange squares, do not have a compara-
ble full patch. Therefore, the synthesized result is not plausible.
(bottom) In our approach, the portion of the patch with irrelevant
data is down-weighted with the masks shown to generate a plausi-
ble result.

finer scales, thus leading to bad results overall as shown in
Fig. 1 (top row). We address this problem by introducing
masks for patches, as explained in the next section.

3. Proposed algorithm
One way to address this issue is to down-weight the por-

tion of a patch that has irrelevant content and only take into
account the part that is useful for synthesis. To do this, we
propose to modify the distance function D as follows:

D(Q, P) =
w×w∑
i=1

m(i)(Q(i)− P (i))2, (2)

where w is the patch width, and m is a mask that weights the
distance between source and target patches at every pixel
and belongs to a large, w2-dimensional set of masks M.
The voting algorithm is modified accordingly: the average
of overlapping patches becomes a weighted average using
the corresponding mask values as weights.

Theoretically, this simple modification can solve the
problem by taking into account only the part of each patch
which is relevant to the distance computation for the search
and vote processes, as shown in Fig. 1 (bottom row). How-
ever, choosing the right mask from a large set M for every
patch is a difficult problem.

Figure 2. A set of five predefined masks M = {m1, · · · ,m5}.
Each mask is normalized so its pixel weights sum up to one. The
leftmost mask m1 is called the center mask and the rest are non-
center masks. The colored border around each mask will be used
to identify which mask is used at every patch in later figures.

Search

Target Source

...

M nearest neighbor fields

Mask map Corresponding

NNF

Vote

Step 1: Search process

Step 2: Mask selectionStep 3: Vote process

Features

Figure 3. Our framework for the Multi-Image Hole-Filling (MIHF)
application. The mask map is color-coded using the colors de-
picted in Fig. 2.

To make the problem more tractable, we propose to limit
M to a small set of pre-defined masks, m1, · · · ,mM , an
example of which is shown in Fig. 2. Our framework has
three main steps: 1) In the search step we perform a separate
patch search process for every mask in this set, resulting
in M Nearest Neighbor Fields (NNFs). 2) Then for every
patch in the target image, we select an appropriate mask
and its corresponding nearest-neighbor source patch using
the model described in Section 3.1. 3) Finally, we use the
masks chosen in the previous step in the weighted-average
voting process. An overview of our framework is shown in
Fig. 3 for the MIHF application.

The main challenge in this process is how to choose an
appropriate mask at every pixel (step 2). In the next section
we explain our machine learning approach to this problem.

3.1. Learning the masks

Ideally, if we had semantic segmentations of source and
target regions, the mask would be defined simply as the

Target SourceOriginal image

Figure 4. For a set of two images taken from different points of
view, we define a hole region in one of the images. The red and
orange squares show two patches with their appropriate masks.
The depth discontinuity is a good clue for how to select the masks.

fragment of the patch belonging to the same region as the
center pixel. For example, in the MIHF case shown in
Fig. 4, the tree is moving in front of a complex background
due to parallax in the two images. In this case, it would
be ideal to label the tree and background as two different
segments and define the masks according to that labeling.
However, depth alone is not enough: in some cases, patches
may have similar appearance to the foreground portion but
have different backgrounds, even if the backgrounds come
from the same object and have the same depth. Computing
such a segmentation automatically is an ill-defined open vi-
sion problem we wish to avoid here. Moreover, the target
often has pixels with unknown color values for which it is
not clear how to compute segmentation in advance.

Our approach is to learn a model for choosing the best
mask from a set of M possible masks. The prediction is
done by using the target patch and the M matching source
patches, each found using the corresponding NNF. Such a
model could depend on many factors such as the cues for
depth discontinuity within the target and source patches, in-
coherency of the NNF, and the target-to-source patch dis-
tances (absolute and relative). The optimal model could be
quite complex, so we propose to learn it from data generated
by a successful patch-based synthesis process that makes
use of masked patches. Our training data should include
features extracted from target and matched source patches
as well as the corresponding “ground truth” masks that led
to a successful synthesis in the end of the process. That
means for each set of features, there is a ground truth mask
which is one of the M pre-defined masks. This is a mul-
tiway classification problem which can be addressed using
random forests [14]. Next, we will explain the process of
generating the data for our learning system.
Dataset - We simulate such data using the MIHF applica-
tion, in which we want to fill a hole in a target image that
contains multiple depth layers, using another image cap-
tured from another view as a source. In this case, we can

ensure that the missing data in the target exists in the source
either in the form of full or partial patches and it is easy to
visually verify the plausibility of the fill.
Ground truth masks - For such a dataset it is also easy to
generate corresponding “ground truth” masks. As shown in
Fig. 4, we have two images from different view points, and
choose a region that covers multiple objects in one of the
images as our synthetic “hole”. Note that in these training
images, we have access to the original image and therefore
we know the true content behind the hole. Thus, it is easy
to manually define good masks for all patches according to
the important boundary edges in the scene. For example, for
the red patch, a mask that down-weights the right side of the
patch would work best and vice-versa for the orange patch.
Based on this observation, we manually draw the important
boundary edges on the target image (called an edge image)
as shown in Fig. 5. We then convert the boundary to a mask
index map using the following patch-based process.

The goal of this process is to convert an edge image
(Fig. 5 left) to a mask map that defines which mask should
be used at each patch (Fig. 5 right). Intuitively, for patches
that do not overlap an edge, a center mask will be a good
default choice. For patches overlapping an edge, if the edge
falls on the left side of the patch, the best choice would be
a mask that down-weights the left side. Likewise, a mask
that down-weights the right side would be the best choice
for patches with an edge on the right side. To do this, we
compute a score for every non-center mask:

scorej =
∑w×w

i=1 mj(i)E(i)∑w×w
i=1 E(i) + ϵ

, j ∈ {2, · · ·M}, (3)

where E is a patch on the edge image (Fig. 5 left) and ϵ is
a small number (10−6). We then set the score for the center
mask equal to 0.3 and assign the mask that have minimum
score. This tries to select the mask such that the pixels re-
ceiving the larger weights have as few edges as possible.

The process of computing mask map is done over mul-
tiple scales and the computed mask maps are then used as
the ground truth mask in a hole-filling process. This pro-
cess provides our training set: we extract a set of features
(described in Section 3.2) for each patch, at each iteration,
and in each scale, and use the ground truth masks as the
target labels. We then use random forests [14] to learn
a model for mask selection given the features for the tar-
get and matching source patches and their corresponding
ground truth masks.

This construction of edge masks using manual marking
of boundary edges led to excellent hole-filling results in all
image pairs in our MIHF learning set as well as many SIHF
examples we tried. Thus, one contribution of our work is
a simple but effective user-assisted hole-filling method for
challenging images with multiple depth layers inside the
hole. Note that in our fully automatic system the manual

Manual boundary Ground truth mask map

Convert the edge

to mask map

Section 3.1

Figure 5. We manually draw the important boundary on the target
image. This boundary is then converted to a mask map which we
use as ground truth mask map. The manual boundary and mask
map are for the dataset in Fig. 4.

boundary edges are only used to create the ground truth
masks for the learning stage. Once a model is learned, it
can predict the masks from the features (Section 3.2) in a
fully automated way.
Simulating divergence - So far, we have explained how to
learn a model from features extracted during synthesis by
bootstrapping it with a ground truth oracle for mask pre-
diction. Although we can learn a model that has high ac-
curacy in predicting masks, it is not perfect. When using
this model in a hole-filling process where the ground truth
masks are unknown, it would likely diverge from a good so-
lution due to the iterative nature of the optimization and in-
accuracies in the model. However, our model is only trained
on the ground truth examples, so its predictions will become
poorer after such divergence occurs. Once this happens, it
is very hard for the method to recover, because the test set
no longer resembles the training set.

Specifically, at every iteration in the hole-filling process,
the learned model will have inaccuracies in mask predic-
tion which cause the computed target for the next iteration
to diverge from the good solution. Then, in the next itera-
tion, the model has to predict the masks using the features
extracted from this new diverged target. If all the features
are extracted from good target images (generated using the
ground truth masks) in the learning stage, the model cannot
accurately predict the masks and, consequently, the quality
of the target for the next iteration worsens. Therefore, we
want to learn a model that can predict the masks even when
the features are extracted from diverged targets (a target im-
age that results from inaccuracies in mask prediction).

In order to achieve this, we enrich the training set by
using features from a diverged synthesis process. Specifi-
cally, we simulate divergence of the fill process and include
the features extracted from the diverged targets along with
their corresponding ground truth mask in the training set.
Learning a model for this enriched training set increases the

Target patch

contrast

Source patch

contrast

NNF boundary

y component

NNF boundary

x component

Patch distance Pixel color varianceSource line mapSource occlusion

boundary map

Figure 6. The features used in our learning system: All the fea-
tures are extracted from the finest scale for the dataset shown in
Fig. 4. The source occlusion boundary map and source line map
are color coded using the colors defined in Fig. 2. Note some of
these features are calculated for all M NNFs, but here we show
only one of them.

robustness of the mask prediction to cases where divergence
has occurred.

Since the reason for divergence in the actual hole-filling
process is the inaccuracies in the model, we found the best
way to simulate such divergence is by bootstrapping from
the model itself. To do this, we first learn an initial model
using the process explained above. Then we repeat the en-
tire process with one key difference: at every iteration, in-
stead of extracting the features from the current result, we
perform a few iterations of search-and-vote using the masks
predicted by the initial model. We then extract the features
from the diverged target and append them along with their
corresponding ground truth mask to the training set. Ba-
sically, this process simulates what happens if we use the
initial model in an actual hole-filling process.

3.2. Features

In order to learn a reliable model, we need to extract
good features. Below we explain the list of features used in
our learning system, a summary of which can be found in
Table. 1. Fig. 6 shows an example of each feature which has
been extracted from the finest scale for the dataset in Fig. 4.
Features that are defined on the source image are mapped to
the target image using all or some of the M NNFs that we
compute in the search process. Color related features are
extracted in the L*a*b* color space.
Patch distance - We compute distance between the target
and its matching source patch using Eq. 2 for NNFs 2 to

Feature name Dimension
Patch distance M − 1

Source occlusion boundaries M − 1
Source lines M − 1

Pixel color variance 1
Nearest neighbor field boundaries 2M

Source patch contrast M − 1
Target patch contrast M − 1

Scale index 1

Table 1. List of features and their dimensions.

M and normalize them by the distance of the center mask
NNF. One might assume that the mask that gives minimum
patch distance is always the best, but we observed that this
often causes the optimization to converge to poor results.
Source occlusion boundaries - We use the method of
Hoiem et al. [10] to extract occlusion boundaries on the
source image. The extracted edges are transformed to a
more useful feature by converting them to a mask map as
explained in Section 3.1. This mask map is defined on
the source image and we map it to the target using NNFs
2 through M . This is an important feature since it cap-
tures depth discontinuities, where non-center masks are of-
ten needed.
Source lines - We extract straight lines in the source im-
age using the method of Akinlar and Topal [2]. These of-
ten correspond to edges in man-made objects which tend to
correspond to depth or motion discontinuities and can com-
plement the occlusion boundary detector. We convert them
to a source mask map and the convert it to a target map as
described above.
Pixel color variance - In order to measure the consistency
of the overlapping patches at every pixel, we compute the
variance of the pixel values from all overlapping source
patches of that pixel in the voting. This variance is com-
puted only for the center mask to measure the consistency of
patches. Intuitively, this variance should be low whenever
the patches are consistent, which we expect to be a good cue
to use the center mask. Whenever the variance is large, non-
center masks may be a better choice. We compute the vari-
ance for each channel separately and find the maximum of
the three channels to penalize patches for which one chan-
nel is inconsistent.
Nearest neighbor field boundaries - The goal of this fea-
ture is to calculate the discontinuities in the nearest neigh-
bor field. We observed that in the regions where the NNF is
coherent we often do not need to use non-center masks, and
masking is more helpful in the regions near discontinuities
in the NNF. To do this, we compute the amplitude of the
gradient of the M NNFs for the x and y components. We
then set the small gradients to zero and filter the thresholded
gradient with a Gaussian filter.

Source patch contrast - We compute the normalized lumi-
nance contrast of the source patch as follows:

cj =

∑w×w
i=1 mj(i)Q(i)−

∑w×w
i=1 (1−mj(i))Q(i)∑w×w

i=1 Q(i)
. (4)

Note that we compute the contrast only for the luminance
channel and for the non-center masks (j ∈ {2, · · ·M}).
Target patch contrast - The contrast of the target patch
is computed for the luminance channel using Eq. 4 for the
masks 2 to M .
Scale index - The index of the current scale in the coarse-
to-fine process. Since we learn a single model for all scales,
this feature is important, so that the model could adapt the
best combination of features and their parameters for each
scale.

These features are used during training along with their
corresponding ground truth masks to learn a model. At run-
time, they are extracted from the input image and fed into
the model to predict a reliable mask.

4. Results

We used 10 pairs of images for the training set, some
of which are shown in Fig. 7. For each pair, we took two
images of a scene from different viewpoints and used one
of the images as the source image and the other as a tar-
get. We marked a hole in the target image in a region with
two or three depth layers so that the model can learn how
to handle such cases. Since the images had mostly verti-
cal depth discontinuities, we added vertically-flipped, 90◦

rotated, and 90◦ rotated + horizontally-flipped versions of
the images to the training set (40 pairs in total) to train the
system symmetrically and to learn to account for horizontal
depth discontinuities. We used a total number of more than
one million patches from all the scales covering all differ-
ent depth discontinuities and layouts. Moreover, since the
ground truth mask maps contain mostly center masks (see
blue color in right image of Fig. 5), we chose half of the
training data from center masks and the other half from non-
center masks to avoid overfitting. We used the PatchMatch
method of Barnes et al. [4] to accelerate the search process.
The patch width w was equal to 11 in all cases, and the sum
of weights in all masks was equal to one. Finally, we used
an online implementation of random forests1 with 100 trees
and default parameters.

Fig. 8 shows one of the examples from our training set,
with our manually annotated boundaries and the “ground
truth” result obtained by using masks derived from the
annotated boundaries. See more examples and results in
supplementary material. Annotating the important depth

1https://code.google.com/p/randomforest-matlab/

S
o

u
rc

e
O

ri
g

in
a

l i
m

a
g

e
Ta

rg
e

t

Figure 7. Some of the images used in the training set. We defined
the hole (shown in pink) in the original images and used them with
the source image to simulate the hole-filling process.

Target Source Result

Figure 8. One example from our training set with the manual
boundary edge annotated inside the hole and the corresponding
result. Such simple user assistance led to excellent results in all
our training examples (see supplementary material).

boundaries is an easy task (took less than a minute per im-
age) and led to excellent hole-filling results in all of the im-
age pairs in our MIHF learning set, as well as in many SIHF
examples we tried. Note that this type of “guided” hole-
filling is different from traditional edge guidance [4, 22] that
indicates locally the location of the search region along an
edge. These methods do not address the case where content
is inconsistent across the edge, and thus are likely to have
difficulties when applied to our examples.

In order to test the accuracy of our learning framework,
we randomly selected one of the training set images, ex-
cluded it from our training set and trained a model using
the rest of the datasets. We then performed hole-filling us-
ing the computed model on the excluded training image and
compared the predicted masks with its ground truth masks.
As before, we sampled half of the patches with center and
the other half with non-center masks. We repeated this pro-
cess five times and averaged the correct classification rates.
The overall accuracy of our method across all scales was
higher than 65%, increasing gradually from coarse scales
to the fine ones (73.6% at the finest). This is compared to
20% for a random selection and 50% for always selecting
the center mask.

We compare our algorithm against regular patch-based
synthesis on the MIHF application in Fig. 9. In all these ex-
amples, the fixed-shape patch-based method has difficulties
around depth discontinuities, resulting in broken edges and
other artifacts. Our method produces plausible results with

Target Source Center

mask

OursRandom

mask

Figure 9. Comparison to regular patch-based method on MIHF.

minimal artifacts.
Next we use the learned model and test it on the SIHF

application. In Fig. 10 we compare our results with regular
hole-filling (our implementation using only center masks)
and Photoshop’s Content-Aware Fill [1]. Our method gen-
erates plausible results where others contain artifacts.

5. Discussion
The learned model relies on the features to predict a good

mask. We observed that the source occlusion boundary is an
important feature in our system. In some cases, the method
of Hoiem et al. [10] fails to detect the occlusion boundaries,
so the learned model might have a problem predicting the
correct masks. Fig. 11 (left) shows the detected occlusion
boundaries for the dataset in the second row of Fig. 10. If
we simply remove all the detected edges, our algorithm gen-
erates the result on the right due to failure of the model in
predicting the right masks.

Our approach has also limitations in case where the
scene has many depth layers. One example of such a case
is shown in Fig. 12. In this case, as shown by the red arrow,
our method cannot fix the small parallax in the background
so the back of the building slightly bends, similar to the reg-
ular patch-based synthesis result. However, our result looks
more plausible overall.

Bobick and Intille [5] used nine shifted windows when

Input image Photoshop CAF Regular Ours

Figure 10. Comparison against Adobe Photoshop content-aware
fill (CAF) and our implementation of a regular patch-based
method on single image hole-filling.

Source occlusion boundary Our result without occlusion boundary

Figure 11. Source occlusion boundaries are an important feature in
our system. The detected occlusion boundaries using the method
of Hoiem et al. [10] for the dataset in Fig. 9 (first row) are shown.
Our result without this feature is shown on the left.

Target Source Regular Ours

Figure 12. In cases where a scene has a lot of depth layers, our
method does not fix small parallax shifts. Nonetheless, the overall
result looks more plausible than the regular patch-based result.

comparing the patches to handle the depth discontinuities in
stereo matching which is very related to our idea of masking
the patches. Our mask patches can be seen as a generaliza-
tion of this idea since the nine shifted windows can be gen-

erated by masking the appropriate pixels on a bigger patch.
However, their shifted windows cannot produce the smooth
masking effect like the circular mask we show in Fig.2.

In this paper we explored the effect of different layouts of
image content on image editing. Although the proposed so-
lution was specific to patch-based methods, this problem ex-
ists in other image editing methods like Shift-Map [15]. In
Shift-Map, the gradient filters at coarse scales might capture
a mixture of different depth layers and the simple neighbor-
hood term in its objective function might not be sensitive
enough to separate them. We believe a similar learning-
based approach could be applied to other image and video
editing methods, and leave this for future research. Our
mask selection approach could be easily combined with re-
cent extensions of patch-based hole-filling, like adaptive lo-
cal search [12] and using statistics of patch offsets [9], that
demonstrated impressive improvements.

6. Conclusion
We have presented a method that addresses a common

problem of existing patch-based methods where patches
cover multiple regions. We propose to use masks to down-
weight some fragments of each patch, producing a more
meaningful search-and-vote process in the inner loop of the
synthesis algorithm. Predicting accurate masks is a hard
problem that involves many factors, so we chose a learn-
ing approach using a dataset of successful synthesis data to
predict a reliable mask. We show improvement over tra-
ditional patch-based techniques on single- and multi-image
hole-filling applications.

7. Acknowledgments
The authors would like to thank the reviewers for their

insightful suggestions. This work was partially funded
by Adobe, and National Science Foundation grants IIS-
1342931 and IIS-1321168.

References
[1] Adobe. Photoshop CC Content-Aware Fill, 2013.

http://www.adobe.com/technology/projects/content-aware-
fill.html.

[2] C. Akinlar and C. Topal. Edlines: A real-time line segment
detector with a false detection control. Pattern Recognition
Letters, 32(13):1633 – 1642, 2011.

[3] C. Barnes, D. B. Goldman, E. Shechtman, and A. Finkel-
stein. Video tapestries with continuous temporal zoom. ACM
Trans. on Graphics (Proc. SIGGRAPH), 29(3), Aug. 2010.

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. PatchMatch: A randomized correspondence algo-
rithm for structural image editing. ACM Trans. Graph.,
28(3):24:1–24:11, July 2009.

[5] A. F. Bobick and S. S. Intille. Large occlusion stereo. Int. J.
Comput. Vision, 33(3):181–200, Sept. 1999.

[6] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and
P. Sen. Image melding: Combining inconsistent images us-
ing patch-based synthesis. ACM Trans. Graph., 31(4):82:1–
82:10, July 2012.

[7] A. Fitzgibbon, Y. Wexler, and A. Zisserman. Image-based
rendering using image-based priors. In ICCV, page 1176,
Washington, DC, USA, 2003. IEEE Computer Society.

[8] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a
single image. In ICCV, 2009.

[9] K. He and J. Sun. Statistics of patch offsets for image com-
pletion. In ECCV, 2012.

[10] D. Hoiem, A. Efros, and M. Hebert. Recovering occlusion
boundaries from an image. International Journal of Com-
puter Vision, 91(3):328–346, 2011.

[11] N. K. Kalantari, E. Shechtman, C. Barnes, S. Darabi, D. B.
Goldman, and P. Sen. Patch-based High Dynamic Range
video. ACM Trans. on Graphics (TOG) (Proc. of SIGGRAPH
Asia 2013), 32(6), 2013.

[12] J. Kopf, W. Kienzle, S. Drucker, and S. B. Kang. Qual-
ity prediction for image completion. ACM Trans. Graph.,
31(6):131:1–131:8, Nov. 2012.

[13] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture op-
timization for example-based synthesis. ACM Transactions
on Graphics, SIGGRAPH 2005, August 2005.

[14] A. Liaw and M. Wiener. Classification and regression by
randomForest. R news, 2(3):18–22, 2002.

[15] Y. Pritch, E. Kav-Venaki, and S. Peleg. Shift-Map image
editing. In ICCV, pages 151–158, Kyoto, Sept 2009.

[16] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B.
Goldman, and E. Shechtman. Robust patch-based HDR re-
construction of dynamic scenes. ACM Trans. on Graphics
(TOG) (Proc. of SIGGRAPH Asia 2012), 31(6), 2012.

[17] E. Shechtman, A. Rav-Acha, M. Irani, and S. Seitz. Regen-
erative morphing. In CVPR, San-Francisco, CA, June 2010.

[18] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Sum-
marizing visual data using bidirectional similarity. In CVPR,
pages 1–8, June 2008.

[19] D. Sun, E. Sudderth, and M. Black. Layered segmentation
and optical flow estimation over time. In CVPR, pages 1768–
1775, 2012.

[20] D. Sun, E. B. Sudderth, and M. J. Black. Layered image
motion with explicit occlusions, temporal consistency, and
depth ordering. Advances in Neural Information Processing
Systems, 23:2226–2234, 2010.

[21] D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black.
A fully-connected layered model of foreground and back-
ground flow. In CVPR, pages 2451–2458, 2013.

[22] J. Sun, L. Yuan, J. Jia, and H.-Y. Shum. Image completion
with structure propagation. ACM Trans. Graph., 24(3):861–
868, 2005.

[23] E. Trulls, I. Kokkinos, A. Sanfeliu, and F. Moreno-Noguer.
Dense segmentation-aware descriptors. In CVPR, pages
2890–2897, 2013.

[24] Y. Wexler, E. Shechtman, and M. Irani. Space-time video
completion. In CVPR, 2004.

[25] O. Whyte, J. Sivic, and A. Zisserman. Get out of my picture!
Internet-based inpainting. In BMVC, pages 1–11, 2009.

